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ABSTRACT A new constellation design, proposed by the Global Precipitation 
Measurement (GPM) mission, relies on a combination of dedicated and shared 
resources in order to provide accurate continuous rainfall measurement.  We 
discuss the challenge of understanding and designing orbits for the dedicated 
resources so that they complement the coverage obtained from the shared 
resources.  We begin by presenting the GPM hybrid constellation concept along 
with our proposed analysis methods and constellation metrics.  We then discuss 
the evolution of our tools from our standalone prototype, named Indra/COV, to a 
fully developed model in FreeFlyer. We finish with a discussion of the results 
produced by both tools, our conclusions, and our goals for future work. 

KEYWORDS: Constellation Design, Coverage, Optimization, Visualization. 

INTRODUCTION 

Reducing mission cost by sharing resources is a concept increasingly embraced by the civilian space 
industry.  A new constellation design for the Global Precipitation Measurement (GPM) mission relies 
heavily on this concept.  A primary GPM objective is ‘to provide frequent sampling of rainfall 
measurement to reduce the uncertainty in estimating global Earth rainfall accumulation’[1].  This 
accuracy can only be achieved by using a constellation of spacecraft.  To satisfy this requirement in a 
cost-effective manner, the GPM project envisions using resources from already or soon-to-be launched 
satellites with suitable instruments (radiometers) for rainfall measurement.  Those spacecraft are referred 
as “Fixed” spacecraft in this paper.  Designed for separate mission goals, they have predetermined orbital 
elements, instruments, and groundtrack behavior, which cannot be changed for GPM purpose.  In addition 

                                                      
1 This work was performed under NASA/GSFC contract NAS5-01090, task 64. 
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to the fixed spacecraft, the GPM project will supply its own satellites, referred to here as “Varied” or 
“Drone” spacecraft.  The Varied spacecraft will complement the coverage obtained by the Fixed 
spacecraft orbit so that the science requirements are satisfied.  While this new concept saves a major part 
of the budget that would be allocated for building, launching and monitoring each of the Fixed spacecraft, 
it also raises new challenges.  As mentioned earlier, these Fixed spacecraft all have different orbital 
elements, instruments, and groundtrack evolutions. The constellation that results from combining them 
with the Varied spacecraft becomes very hard to analyze.  Broadly speaking, three main analysis areas 
must be explored before the mission design can move to the operational phases.  First of all, there is the 
initial placement of the Varied spacecraft so as to best complement the Fixed spacecraft.  Then the issues 
associated with long-term stability (i.e. yearly evolution of the selected performance index) and 
maintenance must be explored.  Finally, consideration of performance plateaus and graceful degradation 
in the GPM constellation must be made since each satellite will generally have different launch dates and 
orbital lifetimes.  The resulting effect is that the GPM constellation will be adding or losing spacecraft 
during its operational life. 

This paper presents our preliminary efforts in dealing with the complexity presented by the GPM hybrid-
constellation.  For the most part, we have focused our analysis on the first point listed above, namely 
determining the placement of the Varied spacecraft.  However, some of our analysis touches on the other 
two points and will be discussed in turn.  In the first section of this work, we define the various coverage 
metrics employed.  The second section focuses on the evolution of our coverage tools.  We first present a 
description of the Matlab standalone tool named Indra/COV, which we developed as a quick prototype to 
enable us to gain insight into what is a good figure of merit for the mission.  Much of our intuition was 
derived from our interaction with the Indra/COV and thus a discussion of the tool is vital.  We next 
discuss those major features of Indra/COV which were then implemented in FreeFlyer.  This step was 
done to alleviate the computational limitations in Indra/COV.  In the next section we deal with the results 
obtained in combination from both tools.  We conclude with a discussion of the future directions in our 
analysis.  In particular, we examine some of the limitations in our current analysis and suggest how our 
current results, obtained using a genetic algorithm (GA), might remedy these shortcomings. 

GPM COVERAGE CONCEPT AND FIGURES-OF-MERIT 

Coverage Points 

Before any discussion can be made of mission figure-of-merits and their various pros and cons, an 
adequate definition of coverage must be adopted.  While it is fairly common to deal with a definition of 
constellation coverage that accounts for overlapping conical fields-of-view projected onto a spherical 
Earth from spacecraft in essentially circular orbit (e.g. [2]), this approach becomes difficult to extend to 
complex sensors viewing an ellipsoidal Earth from arbitrary orbits.  As a result, we adopted a different 
approach.  We assumed that the coverage could be obtained from a sufficiently dense set of coverage 
points that effectively cover the Earth’s surface.  If a constellation can see each of the points at least once 
within its sensor’s field-of view for a given duration, we then assumed that it has seen the entire Earth’s 
surface.  This approach requires a distribution method that places points in approximately equal area 
regions at both the equator and the poles.  Two distribution methods were initially implemented.  The first 
method [3] we dubbed the ‘Helical Distribution’ because the distribution of points looked much like what 
is obtained by pealing an orange in one piece.  The second method [4] we dubbed the ‘Symmetric 
Method’ because it balanced a point in one location by the placement of a point in the antipodal location.  
The number of points used in the distribution will be denoted hereafter as Ncov.  Figure 1 shows the 
placement of Ncov = 500 points for both distributions.   
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Fig. 1.  Symmetrical (Left) and Helical (Right) Distributions with 500 Points. 

Figures of Merits 

Once the points are distributed, a variety of figures-of-merit can be defined.  Since we currently do not 
have a science-derived figure-of-merit we explored three different ones during our analysis of the GPM 
constellation; 1) Coverage, 2) Revisit Statistics, and 3) Binning Statistics.  

To define the first figure-of-merit, Coverage, start by assigning a logical variable, initialized to zero 
(meaning not seen) to each of the Ncov points.  If during any time step of the constellation’s propagation 
period a given point falls within a sensor footprint, the value of the logical variable is set to one (meaning 
seen).  Once a given point has been seen, subsequent viewing are ignored for the duration of the coverage 
measurement.  As mentioned in the Introduction, the basic period of time driven by the GPM science 
requirements is 3 hours.  Based on the sensor characteristics (to be given below), we propagated the 
constellation at 60-second steps.  Note that the step size was carefully chosen to generate a continuous 
swath while keeping the computational burden to a minimum.  Figure 2 shows a typical spatial 
distribution of points.  The points, which were seen at least once, are set to clear and the points that 
remained unseen are colored blue so that the gaps between the swaths of the constellation spacecraft are 
more obvious to the eye. 
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Fig.  2. A Sample Visualization Plot of the Coverage Figure-of-Merit. 

Of course, the visualization shown in Figure 2, while compelling to the human eye, is hard to characterize 
for optimization purposes.  In this latter case, a spatial averaging of the Coverage figure-of-merit is easily 
obtained.  This spatial average is referred to as the Percent Coverage and is defined as the ratio of the 
points seen to the total number of points, Ncov. 

The next figure-of-merit defined, the Revisit Statistics, attempts to take into account the continuous 
fluctuation in the Coverage figure-of-merit by tracking how often a point is revisited during the 
propagation period of the constellation.  A revisit is defined to be the elapsed time between when a given 
point first enters a sensor’s field-of-view and when the same point again enters a sensor field-of-view.  
While a point may be revisited by the same spacecraft or different spacecraft in succession, care is taken 
to ensure that the Revisit Statistics do not over-count the revisits.  If a point is seen during multiple 
subsequent time steps as a sensor footprint moves across the surface of the Earth, only one revisit is 
recorded.  Using the revisit as a basic unit various related statistics can be accumulated.  Of the possible 
choices, we kept five related Revisit Statistics for each of the Ncov points: 1) the Number of Revisits, 2) 
the Average Revisit Time, 3) the Worst Revisit Time, 4) the Best Revisit Time, and 5) the Standard 
Deviation in the Average Revisit Time.  The Number of Revisits is defined as the number of times a point 
on the Earth has been seen during the duration of the run.  The Average Revisit Time records the average 
of all the revisit times for a given point whereas the worst and the best revisits time report respectively the 
longer revisit time and the shorter revisit time for a given point.  Finally, to get a better understanding of 
the fluctuation over time of the Average Revisit Time, we record its temporal standard deviation.  Figure 
3 shows a sample plot for the Number of Revisit for each of Ncov = 5000 points gathered over 7 days.  
Again, the human eye can easily pick out patterns that suggest avenues for improvement and further 
study, but for the optimization, use of a spatial average was made. 
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Fig. 3.  A Sample Visualization Plot of the Revisit Statistics Figure-of-Merit Showing the Number of 
Revisits for Each Point 

The final figure-of-merit, Binning Statistics, is a hybrid measurement that attempts to capture the flavor 
of the Revisit Statistics (in particular the Number of Revisits and the Average Revisit Time) without 
incurring the computational burden.  It is based on the Coverage figure-of-merit but extends the concept 
to long time measurements.  Each day is divided into 8 ‘time-bins’, each bin being 3 hours in duration.  
The Coverage figure-of-merit is then kept for each of the Ncov points for each ‘time-bin’ in the 
propagation duration.  Temporal averaging of the results then yields the desired Binning Statistics.  To be 
concrete, consider a 7-day propagation of the constellation.  Since, each day consists of 8 ‘time-bins’, 
there are a maximum of 56 possible ‘hits’ for each of the Ncov points.  Dividing the actual number of ‘hits’ 
by the total number of ‘time-bins’ gives a ratio that estimates how often a point is seen during the 7-day 
span and what the average revisit time is (to within a rough granularity).  The resulting visuals are similar 
to the Revisit Statistics shown in Figure 3 and since they will be dealt with in detail below are not shown 
here.  Like the other figure-of-merits, Binning Statistics can be spatially averaged for use in optimizing.   

 

We close this section with Figure 4, which schematically shows the relationship between the three figure-
of-merits discussed above.   
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Fig. 4.  A Schematic Comparison of the Three Figures-of-Merit Discussed in the Text.  Note that as 
the level of details generated by the different figure-of-merit increases, the computing performance 

decreases. 

EVOLUTION OF THE COVERAGE TOOLS 

In this section we discuss the evolution of the coverage tools.  Our reason for this two-fold.  First we 
would like to introduce some functionality that we have developed for use in GPM that we believe is 
essentially new.  Secondly, our analysis approach has grown as our tool set has evolved and we believe 
we would be doing a disservice by omitting the insight that was obtained.  We begin with a discussion of 
our original prototype, Indra/COV, and finish with a presentation of the FreeFlyer/Matlab solution 
that we are currently using. 

Standalone Prototype : Indra/COV 

Indra/COV is standalone tool written in entirely in Matlab for analyzing and visualizing different 
constellation configurations in terms of coverage figures-of-merit detailed above.  As discussed above, it 
was developed for the Global Precipitation Measurement (GPM) mission out of the NASA Goddard 
Space Flight Center, Flight Analysis and Dynamics Branch.  Our aim in developing Indra/COV was to 
provide a prototype environment in which various figures-of-merit, methods of visualization and 
optimization techniques could be rapidly implemented and analyzed.   

When launched from Matlab, the Indra/COV GUI is spawned, resulting in a Matlab figure that looks like 
Figure 5.  Each of the functional areas will be discussed briefly.  

Functional area 1 contains the Load/Save Functionality.  Using the Load and Save buttons, the user can 
either restore a previously created constellation and the accompanying results or save the current 
configuration.  The data is retrieved and written in the Matlab workspace format.   

Functional area 2 contains the Constellation Definition and Analysis Functionality.  In this portion of the 
GUI, the user defines the parameters related to the Ncov points distributed on the Earth’s surface.  These 
parameters include the number of desired points, the method used to distribute them, any latitude 
restrictions, and the granularity of a subsidiary coverage grid that allows for fast hierarchical scanning 
through the points during each time step.  The user also defines the propagation duration, time step, and 
force model (the choices being between two-body and J2 propagation).  In addition, the user specifies the 
the spacecraft that make-up the constellation, including in these specifications whether the spacecraft are 
to be regarded as Fixed spacecraft (see the Introduction) or Varied spacecraft whose orbital elements can 
be changed by the optimizer. 
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Fig. 5. Indra/COV Start Screen. Each functionality group is discussed below in the order referred 
by its number. 

Figures 6 and 7 show the main dialogs used for defining the constellation.  The first dialog (Figure 6) 
exhibits all the spacecraft that already compose the existing constellation.  From this panel, the user can 
delete, access and edit information about each individual existing spacecraft or add a new spacecraft to 
the constellation by clicking on <new> entry.   
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Fig. 6. Define Constellation Panel 

 

Figure 7 shows the dialog that is spawned when a spacecraft is created or edited.  For each satellite, the 
user can define its orbital elements as altitude, eccentricity, inclination, right ascension of the ascending 
node, argument of perigee and true anomaly.  Each of these elements can be flagged so that it may be 
varied by the optimizer.  On this panel, the user also defines the sensor parameter as swath width for a 
given altitude. 

 

 
Fig. 7. Create Spacecraft Panel 

 
Functional areas 3 and 4 form the visualization and analysis portions of Indra/COV.  Once the coverage 
region is defined, the propagation and the constellation are initialized, the user can compute the Coverage 
and Revisit Statistics figures-of-merit2 and visualize the results in these regions.  All of the visualizations 

                                                      
2 A beta-version of Indra/COV currently exists which also implements the Binning Statistics figure-of-merit.  

Currently there are no plans to release this version.    
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shown in this paper are done using the M_map a freeware package [5] available for Matlab.  Figures 3 
and 4 were produced in Indra/COV using M_map.   

 
The final functional area is area 5, which comprises the optimizing portion of Indra/COV.  The 
optimization is done via the Matlab Optimization ToolBox using a modified form of fmincon.  In the 
current release of Indra/COV, only the Coverage figure-of-merit is used as the objective function. 

Recognizing the need for flexibility, Indra/COV allows the figures-of-merit to visualized and computed 
for various combinations of spacecraft comprising the constellation for both the initialized set of 
spacecraft and the set obtained by an optimizer.  This functionality allowed us to play out a variety of 
trade-off studies and is a paradigm that we followed when we moved beyond the prototype stage.   

FreeFlyer/Matlab Solution 

As experience was gained with Indra/COV it became apparent that its fundamental limitation was the 
computational performance that was obtained using Matlab.  The decision was then made to move the 
analysis into a higher performance environment.  However, we needed to ensure that the good features of 
Indra/COV were preserved.  These considerations led us to an implementation of the core calculations in 
FreeFlyer supplemented with data post-processing and visualization in Matlab.  This implementation 
allows access to the high-fidelity, full object-oriented functionality of FreeFlyer.  In particular, 
FreeFlyer’s ability to propagate multiple spacecraft simultaneously provided a natural solution to the 
placement problem of the Varied or Drone spacecraft with respect to the Fixed. 

RESULTS 

This section details our current results for the GPM analysis.  We begin by presenting the results obtained 
with Indra/COV.  Visual plots of the Binning Statistics for each coverage point mostly comprise these 
results.  We then present the results obtained from the FreeFlyer/Matlab solution.  The bulk of these 
results are based on spatial averages of the Binning Statistics figure-of-merit.  Recall that the Binning 
Statistics are defined as the ratio of number of bin hit to the total number of bins for a given run.  Each 
day is divided into 8 ‘time-bins’, each bin being 3 hours in duration.  In general, the visual plots provide a 
richer representation than the spatial averages but are not amenable to automation or optimization.  We 
finish by discussing some preliminary work that has been performed with Genetic Algorithms, which we 
hope will begin to bridge the two approaches. 

Indra/COV Results 

Coverage and Optimization 

In this section, we present one example of the results obtained using a modified fmincon to optimize a 
3-hour coverage in Indra/COV.  We looked into a constellation of 8 spacecraft.  The first 5 spacecraft 
comprised the Fixed and consisted of DMSP-F18, DMSP-F19, GCOMB1, GPM-Core, and Megha-
Tropiques.  Their orbital elements are given in Table 1. 
 

Table 1. Fixed Spacecraft Orbital Elements. 

Orbital Element or Parameter DMSP-F18 DMSP-F19 Megha-
Tropiques 

GPM-Core GCOMB1 

alt (km) 833 833 867 400 803 
e 0 0 0 0 0 
i (deg) 98.748 98.748 22 65 98.620 

Ω (deg) 152.03 197.03 263.32 69.25 227.28 
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ω (deg) 0 0 0 0 0 

f (deg) 0 0 0 0 0 
swath width (km) 1707 1707 1600 920 1600 
swath alt. (km) 833 833 800 400 803 
half-angle (deg)3 43.715 43.715 43.186 47.811 43.085 

 
The inclination and node of the 3 remaining spacecraft were varied to optimize coverage.  The optimizer 
converged to an 85.65%-coverage with the following constellation orbital elements: 

Table 2. Orbital Element of the Optimized Constellation Coverage Using fmincon 

Orbital Element or Parameter Drone 1 Drone 2  Drone3 

alt (km) 600 600 600 
e 0 0 0 
i (deg) 87.76 35.89 74.92 

Ω (deg) 286.33 232.2 71.30 

ω (deg) 0 0 0 

f (deg) 0 0 0 
swath width (km) 1600 1600 1600 
swath alt. (km) 800 800 800 
half-angle (deg)4 43.186 43.186 43.186 

 
However, this result only characterizes an instantaneous 3-hour coverage.  To capture the temporal 
variation of this 3-hour coverage, we introduce Binning Statistics as our new figure-of-merit.  Note that 
using fmincon with Binning Statistics would be computationally too long as one 3-hour coverage 
optimization  run takes about 1 hour.  

Binning Statistics 

This section attempts to determine the run period necessary to obtain a significant and stable figure-of-
merit.  Figure 8 shows spatial snapshots every 2 days of average Binning Statistics over a period of 15 
days.  We notice that after about 8 to 9 Days the spatial average Binning Statistics hardly change.  Thus, 
for this preliminary study, we chose run periods of 7 days and 15 days.   

                                                      
3 The half-angle value is not independent of the swath width and swath altitude values.  Rather it represents an ideal 

conical sensor that was used in place of the true complex sensor footprint in Indra/COV. For consistency, this 
simplification was also used in our FreeFlyer analysis.  Future work will include the true sensor footprints. 

4 At the time of this writing, the sensor complement of the Drones was not determined and the values from Megha-
Tropiques were used. 
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Fig. 8. 15-Day Average Binning Statistics Spatial Evolution. 

FreeFlyer/Matlab Results 

Arbitrary Drones 

Using FreeFlyer, 47 spacecraft were propagated for 15 days with a 60-second step size using a J2 force-
model.  Separate Binning Statistics were kept for each spacecraft over each of the 15 days, with 8 bins per 
day, giving a total of 120 bins.  The number of points used in the coverage model was 5000.   The data 
was generated in FreeFlyer, in approximately 2.5 hours, and was collected in Matlab.  The resulting 
data was just over 215 megabytes.   
 
The 47 spacecraft fell into two classes. The first 5 spacecraft comprised the Fixed and their orbital 
elements were given in Table 1.  The remaining 42 spacecraft were termed the Drones.  Each Drone was 
given the same starting altitude, eccentricity, argument of perigee, and true anomaly. These are given in 
Table 3.  In addition, the Drones were assigned a cone half-angle of 43.2°. 
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Table 3.  Orbital Elements Common to All Drone Spacecraft. 

Drone Orbital Element Value 

alt. 600 km 
e 0 

ω 0° 
f 0° 

 
The Drones inclination and right-ascension of the ascending node were varied as follows.  Seven different 
inclinations were chosen ranging from 35 to 95 degrees in steps of 10 degrees.  For each inclination, the 
right-ascension of the ascending nodes ranged from 0 to 150 degrees in steps of 30 degrees, ensuring that 
a node (either ascending or descending) was found every 30 degrees.  This approach is summarized in 
Table 4.   
 

Table 4. Schematic Representation of the GPM Scanning Analysis.  The numbers in the cells are a 
short-hand for the Drone spacecraft.  Thus, Drone25 has an inclination of 75° and a right-ascension 

of ascending node of 0°. 

inc Ω = 0° Ω = 30° Ω = 60° Ω = 90° Ω = 120° Ω = 150° 

35° 1 2 3 4 5 6 

45° 7 8 9 10 11 12 

55° 13 14 15 16 17 18 

65° 19 20 21 22 23 24 

75° 25 26 27 28 29 30 

85° 31 32 33 34 35 36 

95° 37 38 39 40 41 42 
 
Once the FreeFlyer run was completed, different GPM constellation configurations were examined.  
Each constellation consisted of the 5 Fixed spacecraft plus between 1 and 5 Drones.  Because of the 
computationally intense nature of the scanning and the combinatorial explosion that results for large 
number of spacecraft in the constellation, not all possible combinations were analyzed.  As mentioned 
above, current work is underway to determine if a Genetic Algorithm can help handle this complexity.  
Table 5 shows the type of constellation and the number of cases examined. 

Table 5. GPM Constellation Runs 

Constellation Type Number of Possible 
Cases 

Number of Examined 
Cases 

Approximate Computing 
Time  

(PII 500MHz) 

Fixed + 1 Drone 42 42 1 min 
Fixed + 2 Drones 861 861 20 min 
Fixed + 3 Drones 11480 1330 30 min 
Fixed + 4 Drones 111930 5985 2 hours 15 min 
Fixed + 5 Drones 850668 20349 8 hours 30 min 
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In order to make the results more manageable, the spatial average of the Binning Statistics were generated 
in a set of post-processing algorithms.  For convenience we termed the spatial average of the Binning 
Statistics figure-of-merit as the Constellations Fitness value.  Figures 9-13 show the plot of the fitness 
values for constellations consisting of 1, 2, 3, 4, and 5 Drone spacecraft respectively. 
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Fig. 9. Constellation Fitness for the 1 Drone Cases (42 Cases Examined). 
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Fig. 10. Constellation Fitness for the 2 Drone Cases (861 Cases Examined). 
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Fig. 11. Constellation Fitness for the 3 Drone Cases (1330 Cases Examined). 
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Fig. 12. Constellation Fitness for the 4 Drone Cases (5985 Cases Examined). 
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Fig. 13. Constellation Fitness for the 5 Drone Cases (20349 Cases Examined). 
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Figure 14 shows how the statistics associated with the Constellation Fitness grow as a function of the 
number of spacecraft. 
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Fig. 14. Statistical Measures of the GPM Constellation Fitness as a Function of the Number of the 

Drones in the Constellation. 

 
Table 6, shows the break down for the maximum in each constellation type according to the Drone 
spacecraft presented in Table 3. 
 

Table 6. The Makeup of the Maximum Constellation Fitness Cases for Each Constellation Type. 

Constellation Type Maximum Constellation Fitness Comprising Spacecraft 

Fixed + 1 Drone 0.756 35 
Fixed + 2 Drones 0.814 34, 41 
Fixed + 3 Drones 0.850 23, 35, 41 
Fixed + 4 Drones 0.880 1, 23, 35, 41 
Fixed + 5 Drones 0.905 1, 3, 23, 35, 41 

 
Finally, Figure 15 shows histograms for each constellation type.  As can be seen from the figure, in each 
constellation type approximately 2.5 percent of the cases are at or near the maximum fitness value.   
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Fig. 15. Histograms for Each of the Constellation Types.  Top row from left to right: 5 Fixed + 1 

Drone, 5 Fixed + 2 Drones,  and 5-Fixed + 3.  Bottom row from left to right: 5 Fixed + 4 Drones and 
5 Fixed + 5 Drones.  Note that many constellation configurations yielded Binning Statistics near the 

maximum.   

 
We found, using this metric that there were many combinations of spacecraft that gave fitness values at or 
near the maximum.  In addition, these cases were distributed over the different inclinations and nodes (see 
Figure 9-13). 

Sun-Synchronous Drones 

Building on the observation from the previous analysis that the high inclination cases seem to provide the 
better Constellation Fitness, the next analysis performed centered on Sun-Synchronous Drones.  The basic 
reason for this restriction is that since three of the five Fixed spacecraft are Sun-Synchronous then 
perhaps better results would be obtained if the Drones themselves had identical nodal regression rates.  
Again using FreeFlyer, two sets of 36 spacecraft were propagated for 15 days with a 60-second step 
size using a J2 force-model.  Separate Binning Statistics were again kept for each spacecraft over each of 
the 15 days, with 8 bins per day, giving a total of 120 bins.  The number of points used in the coverage 
model was 5000.   The data was generated in FreeFlyer, in approximately 3.7 hours, and was collected 
in Matlab.  The resulting data was just over 300 megabytes.   
 
The 72 Drone spacecraft were all given the orbital elements detailed in Table 7.  The inclination was 
chosen so that they were Sun-Synchronous.  The 72 Drones were further divided into two classes.  The 
first 36 spacecraft had right-ascension of the ascending nodes ranging from 0° to 350° in steps of 10° and 
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true anomalies of 0° (Drone class 1).  The second 36 spacecraft had the same node spacing but started 
with true anomalies of 180° (Drone class 2). In addition, the Drones were assigned a cone half-angle of 
43.2°. 

Table 7. Orbital elements common to all Drone spacecraft. 

Drone Orbital Element Value 

alt. 600 km 
E 0 
I 97.7876° 

ω 0° 
F 0° (Drone class 1) or 180° (Drone class 2) 

 
Once the FreeFlyer run was completed, different GPM constellations were examined.  Each 
constellation consisted of the 5 Fixed spacecraft plus between 1 and 2 Drones.  The various cases are 
shown in Table 8. 

Table 8. GPM Constellation runs. 

Constellation Type Number of 
Possible Cases 

Number of Examined 
Cases 

Approximate Computing 
Time  

(PII 500MHz) 

Fixed + 1 Drone (Class 1) 36 36 1 min 
Fixed + 1 Drone (Class 2) 36 36 1 min 
Fixed + 2 Drones  
(1 from each Class) 

1296 1296 20 min 

 
Again, in order to make the results more manageable, the Constellation Fitness, discussed above, was 
employed.  Figures 16-17 show the plot of the fitness values for constellations consisting of 1 Drone 
spacecraft from either Drone class 1 or Drone class 2. 
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Fig. 16. Constellation fitness for the 1 Drone cases (Drone class 1). 
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Fig. 17. Constellation fitness for the 1 Drone cases (Drone class 2). 

 
It is clear from these figures that the true anomaly does not play a role for the 1 spacecraft case.  The 
maximum Constellation Fitness, in both figures, obtains for cases 11 or equivalently 29, corresponding to 
a right-ascension of ascending node of 110 or 290 degrees or a mean-local-time of 2:42 pm or 2:42 am.  
Figure 18, shows the Constellation Fitness values for all possible 7 spacecraft constellations comprised of 
the 5 Fixed spacecraft plus 2 Drone spacecraft, one from Drone class 1 and one from Drone class 2. 
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Fig. 18. Constellation fitness for the 2 Drone cases (1 from Drone class and one from Drone class 2). 

 
The maximum fitness of the 2-Drone constellation was obtained with case 11 (or equivalently case 29, 
since the two are related by a 180 degree shift in true anomaly) at a Constellation Fitness value of 0.832.  
We draw this portion of the analysis to a close by comparing these results with the results from the 
analysis with the Arbitrary Drones presented: 

• The 1 spacecraft case resulting in the maximum Constellation Fitness had a node of 120 degrees, 
an inclination of 95 degrees, and a fitness value of 0.756 in the previous analysis.  The 
corresponding data for this analysis are a node of 110 degrees, an inclination of 97.78 degrees, 
and a fitness value of 0.758. 

• The 2 spacecraft case resulting in the maximum Constellation Fitness had nodes of 90 and 120 
degrees and had inclinations of 85 and 95 degrees, in the previous analysis.  The corresponding 
fitness value was 0.814.  The corresponding data for this analysis were nodes at 100 and 110 
degrees and inclinations at 97.78 degrees.  The corresponding fitness value was 0.832. 

 
 
Long-Term Constellation Evolution 

 
In this section, we present the work performed on the long-term evolution of the Constellation.  To gauge 
the long term evolution, we used FreeFlyer to produce a time series of the spatial average of the 3-hour 
Coverage figure-of-merit for an entire year.  The Constellation Fitness used above (i..e. the spatial 
average of the Binning Statistics) is then obtained by an appropriate moving average.  Figure 19, shows 
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the long-term behavior for a constellation comprised solely of the Fixed spacecraft.  In general, the data 
trend is essentially flat with an average of about 0.68 and fluctuations that have excursions as high as 0.73 
and as low as 0.62.  
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Fig. 19.  Long-term behavior of the 3-hour Coverage of the Fixed spacecraft over 1 year.  The 

Constellation Fitness (i.e. the spatial average of the Binning Statistics) are obtained by taking the 
appropriate moving average).   

 
 
Consistent with the above results (see Figure 14), as more spacecraft are added, the 3-hour Coverage 
rises.  However, the long-term evolution can show signs of secular trends.  Consider the four constellation 
cases shown in Figure 20(a-d).  For convenience, we will specify the free orbital elements of the Drones 
in the compact notation (a,b,c) where the values for a, b, and c will be the inclination, right-ascension of 
the ascending node, and the true anomaly (in degrees) respectively.  In Case (a), the constellation is 
comprised of Drones with elements (95,110,0), (95,110, 180), (35,0,0).   This case was constructed by 
combining the Fixed spacecraft with the best two Sun-Synchronous Drones and then scanning over the 
Arbitrary Drones to find the best fit.  Then the inclinations were backed off of their Sun-Synchronous 
values and the long-term evolution was performed.  The results obtained were suggestive of the role of J2 
was playing.  Although the 3-hour Coverage initially increased, the trend quickly reached a maximum and 
then fell.  The same case was run without the J2 term in the force model and the results are shown in 
Figure 20(b).  Here the trend of the 3-hour Coverage remained relatively flat with a maximum not quite as 
high as obtained in Case (a) but with a minimum well above the minimum of Case (a).  Although we need 
to perform more analysis, we believe that these results suggest that only Sun-Synchronous Drones can 
achieve long-term stability as their nodal regression rates match those of most of the Fixed spacecraft.  
This conjecture seems also to explain why the trend in Case (a) is first “increase” then “decrease”.  If the 
nodal rates of the Drones are not matched to the Sun-Synchronous members of the Fixed, then the relative 
spacing between the nodes changes in time.  This change has the effect of moving the constellation 
configuration along the curves shown in Figures 9-13.  Thus a constellation configuration that has yielded 
a high value for the 3-hour Coverage over a period of time (i.e. a high value for the Constellation Fitness) 
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will eventually transition to configuration with a low value.  Further evidence comes by comparing Cases 
(c) and (d).  In Case (c) the Drones have free orbital elements given by (95,110,0), (95,110,180), (95,0,0).  
In Case (d) the Drones have the same orbital elements as in (c) with the exception that the inclinations 
were now set to their Sun-Synchronous values.   Comparing the two plots shows clearly how the trend in 
Case (c) is to first increase and then decrease while the same plot for Case (d) remains essentially flat.  
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Fig. 20.  Long-term behavior of a variety of GPM constellations comprised of the Fixed spacecraft 
and 3 Drones.  Using the notation (a,b,c) to denote the Drone’s inclination, right-ascension of the 
ascending node, and true anomaly (in degress) the cases are as follows.  Case a) the Drones are at 

(95, 110,0), (95,110,180), and (35,0,0).  Case b) is the same as case a) but with no J2 term in the force 
model.  Case c) the Drones are at (95,100,0), (95,110,180), and (95,0,0).  Case d) is similar to case c) 

with the exception that the inclinations were chosen to be Sun-Synchronous.   

Genetic Algorithm  

As mentioned earlier, the computationally intense nature of the scanning for increasing number of 
spacecraft in the constellation restricted the analysis to part of the solution space.  Consequently, a genetic 
algorithm (GA) seemed a natural transition from our “brute-force” search.  Genetic algorithms are 
particularly efficient methods for finding a solution in a large space of possible solutions.  The GA 
evaluates, according to a fitness criteria, which members of an initial set of solutions (i.e. initial 
population) to keep or to discard.  Then, new members are added to the population by reproduction or 
mutation of the “good” members of the population following a stochastic process.  This 
elimination/reproduction-mutation cycle is repeated for N iterations or until the best member of the 
population reaches a desired fitness value. 
 
The results presented in this section were generated using the Matlab genetic search toolbox from 
Optimal Synthesis [5] to optimize the FreeFlyer data used above.  For this analysis, we defined two 
fitness criteria labeled “pure fitness” and “mixed fitness”.  The “pure fitness” refers to the spatial average 
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of the Binning Statistics figure-of-merit defined in the previous section.  The “mixed fitness” is defined as 
the “pure fitness” minus the spatial standard deviation of the temporal average of the Binning Statistics.  
This second figure-of-merit was introduced to evaluate the spatial uniformity of the average Binning 
Statistics.  For the GA runs, we used the 42 drones from Table 3.  In addition, the GPM-Core and Megha-
Tropiques (MT) right-ascension of the ascending node were allowed to vary between 0 and 150 degrees 
by increment of 30 degree corresponding to 6 additional spacecraft each.  DMPS-F18, DMSP-F19 and 
GCOMB1 shown in Table 1 remained unchanged.  Binning Statistics were recorded for a total of 57 
spacecraft for 7 days with a 60-second step size using a J2 force-model. 
 
Each chromosome or member of the population was coded as a sequence of case number.  The first two 
numbers represent MT and the GPM-Core respectively.  Each of the following number represents an 
additional drone picked from the 42 cases.  For example, when considering 3 additional drones, a 
constellation coded as: ‘2 6 12 41 28’ translate to the constellation detailed in Table 9. 
 

Table 9. Constellation Orbital Elements Corresponding to the Chromosome ‘2 6 12 41 28’ 

Orbital 
Element or 
Parameter 

DMSP-F18 DMSP-F19 GCOMB1 Megha-
Tropiques 

GPM-
Core 

Drone 1 Drone 2 Drone 3 

alt (km) 833 833 803 867 400 600 600 600 
e 0 0 0 0 0 0 0 0 
i (deg) 98.748 98.748 98.620 22 65 45 95 75 

Ω (deg) 152.03 197.03 227.28 30 150 150 120 90 

ω (deg) 0 0 0 0 0 0 0 0 

f (deg) 0 0 0 0 0 0 0 0 
swath width 
(km) 

1707 1707 1600 1600 920 1600 1600 1600 

swath alt. 
(km) 

833 833 803 800 400 800 800 800 

half-angle 
(deg) 

43.715 43.715 43.085 43.186 47.81 43.186 43.186 43.186 

*shaded areas represent varied orbital elements or parameters. 
 
An initial population of 214 members was generated for each run.  When creating a population, one has to 
make sure that all the possible cases are present so as not to remove possible solutions from the search 
space.  Thus, the 200 first members were generated randomly and the remaining 14 were manually 
implemented to ensure that all the possible 54 cases were included.  The run was stopped after 1500 
iterations and the population was restricted to a maximum of 500 members.  New members were added 
with a 70% probability of crossover with randomly selected parents and 30% of mutation with 
randomized selection of a parent based on fitness.  When the population reached its maximum, the ‘worst’ 
fitness candidates were decimated.  For each of the fitness studied, the best candidate’s orbital elements 
and its corresponding 7-days spatial average Binning Statistic plot are presented.  In addition, a 
preliminary long-term analysis of the solutions is provided.  The constellations presented below are 
composed of 8 spacecraft (i.e. 3 additional drones). 

Results 

As shown in Table 10 the best “Pure Fitness” constellation, with a fitness of 0.859, seems to favor higher 
inclinations.  This result is in agreement with the maximum fitness value found using the scanning 
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method in the section above.  As mentioned previously, we do not currently have a science-derived 
figure-of-merit.  Thus we shouldn’t expect that the constellation can be evaluated solely on the fitness 
value used before, and so the spatial distribution of the Binning Statistics was also analyzed (Figure 21) 
along with the long-term behavior of the 3-hour coverage (Figure 22).  The point we wish to emphasize, 
is that the spatial averaging, which formed the heart of the scanning methods, is likely failing to capture 
important details vital to successful science.  Our hope is that the GA approach will allow us to work 
more of the spatial structure of the Binning Statistics into consideration without causing an undue 
computational strain.  Looking at Figure 21, we notice that high latitudes have the highest score of 
average Binning Statistics with about 0.9 (i.e. 90% of the total 56 bins hit in average).  The lowest fitness 
is located in the ±35-50 deg latitude band and is about .75 and .80. This result appears inadequate for 
GPM, which defines its zone of interest within the ±70 deg latitude band.  The highest fitness score is 
mainly concentrated out of the target area.  In addition, the long-term temporal average of the cumulated 
coverage seen in Figure 21 slopes down as time elapses.  This result suggests that the solution generated 
using such a short time-span (7 days) is not temporally stable under J2 perturbation.  
 

Table 10. Best Candidate Inclination and Right Ascension of the Ascending Node (Pure Fitness ) 

 MT GPM-Core D1 D2 D3 

i (deg) 22 65 85 95 35 

Ω (deg) 150 150 90 120 90 
 

 
Fig. 21. 7-Days Average Binning Statistics Plot (Pure Fitness) 

 23



 
Fig. 22.  Yearly Coverage Variation (in Green) and Cumulated Average Coverage (in Blue) using a 

“Pure Fitness” Criteria. 

 
To distribute the Binning Statistics more uniformly, another fitness value (i.e. “mixed fitness”) which 
penalizes high spatial standard deviation is introduced.  The new constellation shown in Table 11 now 
favors lower inclinations with a fitness of .8473.  Even though the fitness value is lower than the previous 
solution, we observe a better distribution of the Binning Statistics as a function of latitude in Figure 23.  
Finally, while this modification improves the solution by ‘smoothing-out’ the spatial distribution, the 
long-term behavior (see Figure 24) again suffers the same falloff as other constellations with low-
inclination Drones (Figure 20-c).  
 

Table 11.  Inclination and Right Ascension of the Ascending Node (Mixed Fitness) 

 MT Core D1 D2 D3 

i (deg) 22 65 55 35 95 

Ω (deg) 120 90 150 30 90 
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Fig. 23.  7-Days Average Binning Statistics Plot (Mixed Fitness) 

 

 
Fig. 24.  Yearly Coverage Variation and Cumulated Average Coverage (Mixed Fitness) 

 
In conclusion, the fitness defined for the preliminary GA runs is not adequate to generate a stable long-
term solution.  Attempts to achieve a uniformly spatial distribution of the Binning Statistics was 
successful by implementing a “mixed fitness” which took into account the spatial standard deviation of 
the “pure fitness”.  Therefore, we envision that spatially-averaged snapshots of the “mixed fitness”, 
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sampled for, perhaps, 3 days once per month, might be a better figure-of-merit to capture the complexity 
of the solution. 

CONCLUSIONS 

This paper summarizes our preliminary efforts in designing the Global Precipitation Measurement (GPM) 
constellation.  GPM hybrid constellation mixes shared resources (Fixed spacecraft) along with 
GPM-specific drones.  Our first goal was to best design the placement of the complementary spacecraft to 
satisfy mission requirements.   The first figure-of-merit merit investigated is the global 3-hour coverage 
between ±70 deg.  However, additional figures-of-merit were considered such as Revisit Statistics and 
Binning Statistics and evaluated in terms of the GPM science goals.  The Binning Statistics were chosen 
as our main figure-of-merit for the bulk of our results as they appeared the best trade-off between 
accuracy and computing time.  To build intuition on the problem we developed Indra/COV, a standalone 
Matlab tool.  This visualization produced by Indra/COV was essential in advancing our understanding of 
the spatial characteristics of the figures-of-merit we were investigating. However, the plots produced were 
not amenable to an automated optimization scheme.  Thus we moved to a FreeFlyer/Matlab 
functionality, which allowed us to generate a database of 15-day Binning Statistics compiling each 
candidate spacecraft.  The GPM constellation design thus transformed into solving a combinatorial 
problem (i.e. find the combination of drone that would lead to the best figure-of-merit).  We first looked 
into scanning over the possible spacecraft combinations where the constellations were composed of the 5 
Fixed spacecraft and some mix of either the Arbitrary or the Sun-Synchronous Drones.  However, as the 
number of combinations grew with the number of spacecraft, scanning all possible combinations quickly 
became prohibitive without leaving out part of the solution space and we thus moved to a genetic 
algorithm (GA).  Our preliminary results from the GA suggest that lower inclination Drones lead to a 
more uniform spatial average of the Binning Statistics.  However, when considering the long-term 
stability, the Sun-Synchronous Drones appear as a better solution.  Indeed, because the Fixed spacecraft 
are already Sun-Synchronous, the initially designed average 15-day Binning Statistics is maintained under 
J2.  On the other hand, we observed that Sun-synchronous drones exhibit high fitness in the high latitude 
band which are of little interest to GPM mission.  Our future work will focus on working closely with the 
GPM project scientists to develop a combine coverage/rain fall model.  We would like to determine how 
important the temporal and spatial fluctuations in the coverage are to the accurate measurement of 
precipitation.  This study would allow us to construct a fitness criteria better tailored to the GPM needs.  
Along with search for new figure-of-merit, we also need to further analyze the effects of perturbations 
other than J2.  Finally, our efforts will continue on developing the GA method as it has generated results 
in agreement with the scanning method for significantly smaller fraction of computing time. 
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